How about ANY FINITE SEQUENCE AT ALL?

          • cosecantphi [he/him, they/them]@hexbear.net
            link
            fedilink
            English
            arrow-up
            7
            ·
            edit-2
            2 days ago

            It’s implicitly defined here.

            0.101001000100001000001 . . .

            The definition of this number is that the number of 0s after each 1 is given by the total previous number of 1s in the sequence. That’s why it can’t contain 2 despite being infinite and non-repeating.

              • cosecantphi [he/him, they/them]@hexbear.net
                link
                fedilink
                English
                arrow-up
                1
                ·
                edit-2
                15 hours ago

                That’s a decimal approximation of Pi with an ellipsis at the end to indicate its an approximation, not a definition. The way the ellipsis is used above is different. It’s being used to define a number via the decimal expansion by saying it’s an infinite sum of negative powers of 10 defined by the pattern before the ellipsis.

                So we have:

                0.101001000100001000001 . . . = 10^-1 + 10^-2 + 10^-3 + 10^-4 +10^-5+ . . .

                Pi, however, is not defined this way. Pi can be defined as twice the solution of the integral from -1 to 1 of the square root of (1-x^2), a function defining a unit semi-circle.

            • मुक्त@lemmy.ml
              link
              fedilink
              arrow-up
              1
              ·
              1 day ago

              0.101001000100001000001 . . .

              Might very well be :

              0.101001000100001000001202002000200002000002 …

              Real life, is different from gamified questions asked in student exams.

              • cosecantphi [he/him, they/them]@hexbear.net
                link
                fedilink
                English
                arrow-up
                1
                ·
                edit-2
                16 hours ago

                Implicitly defining a number via it’s decimal form typically relies on their being a pattern to follow after the ellipsis. You can define a different number with twos in it, but if you put an ellipsis at the end you’re implying there’s a different pattern to follow for the rest of the decimal expansion, hence your number is not the same number as the one without twos in it.

        • flashgnash@lemm.ee
          link
          fedilink
          arrow-up
          2
          ·
          2 days ago

          Because you’d need to search through an infinite number of digits (unless you have access to the original formula)

    • BrainInABox@lemmy.ml
      link
      fedilink
      English
      arrow-up
      7
      arrow-down
      5
      ·
      2 days ago

      Are you trying to say the answer to their question is no? Because if so, you’re wrong, and if not I’m not sure what you’re trying to say.

      • ped_xing [he/him]@hexbear.net
        link
        fedilink
        English
        arrow-up
        9
        arrow-down
        1
        ·
        2 days ago

        The conclusion does not follow from the premises, as evidenced by my counterexample. It could be the case that every finite string of digits appears in the decimal expansion of pi, but if that’s the case, a proof would have to involve more properties than an infinite non-repeating decimal expansion. I would like to see your proof that every finite string of digits appears in the decimal expansion of pi.

        • BrainInABox@lemmy.ml
          link
          fedilink
          English
          arrow-up
          3
          arrow-down
          6
          ·
          2 days ago

          Well that’s just being pointlessly pedantic, obviously they fucking know that a repeating number of all zeros and ones doesn’t have a two in it. This is pure reddit pedantry you’re doing